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Crystallography and periodic average structures (PASs) of two-dimensional

(2D) quasiperiodic tilings with N-fold symmetry (N-QPTs with N = 7, 8, 9,

10, 11, 12, 13, 15) were studied using the higher-dimensional approach. By

identifying the best (most representative) PASs for each case, it was found that

the complexity of the PASs and the degree of average periodicity (DAP)

strongly depend on the dimensionality and topology of the hypersurfaces (HSs)

carrying the structural information. The distribution of deviations from

periodicity is given by the HSs projected upon physical space. The 8-, 10- and

12-QPTs with their 2D HSs have the highest DAP. In the case of the 7-, 9-, 11-,

13- and 15-QPTs, the dimensionality of the HSs is greater than two, and is

therefore reduced in the projection upon 2D physical space. This results in a

non-homogeneous distribution of deviations from the periodic average lattice,

and therefore in a higher complexity of the PASs. Contrary to the 7- and 9-QPTs,

which still have representative PASs and DAPs, the 11-, 13- and 15-QPTs have a

very low DAP.

1. Introduction

The discovery of quasicrystals induced a paradigm change in

crystallography. Quasicrystals with decagonal or icosahedral

diffraction symmetry and sharp Bragg reflections questioned

one of the fundamentals of diffraction theory: the assumption

that three-dimensional lattice periodicity was a necessary

condition for pure point Fourier spectra. It was shown that dD

quasiperiodic structures, which can be described as dD

sections of nD periodic hypercrystal structures (d < n), also

have pure point Fourier spectra; for an introduction to the

field see, for instance, Steurer & Deloudi (2008) and Steurer &

Deloudi (2009). On tiling theory, model sets and diffraction

properties see, for instance, de Bruijn (1981), Moody & Patera

(2000) and Baake & Grimm (2011).

Owing to the lack of a point of global N-fold symmetry in

general quasiperiodic tilings (QPTs), their symmetry is usually

given in terms of their diffraction symmetry, i.e. the point

symmetry of their diffraction pattern (Laue group) or of the

Patterson function. In our case of two-dimensional (2D)

N-QPTs, the diffraction symmetry as well as the orientational

symmetry of the tiling edges is N-fold if N is an even number

and 2N-fold if N is an odd number.

The study of quasiperiodic structures and their underlying

tilings is not only of crystallographic interest. The possibility to

design quasiperiodic structures with arbitrarily high rotational

symmetries and Bragg diffraction spectra opens up new

opportunities for the creation of metacrystals such as photonic

and phononic heterostructures, with omnidirectional band-

gaps. For a review see, for instance, Steurer & Sutter-Widmer

(2007). However, the implications of quasiperiodicity on the

physical properties of a system have not all been fully

explored yet.

Why are quasicrystals with specific diffraction symmetries

such as decagonal or icosahedral stable and those with octa-

gonal or dodecagonal symmetry less favorable or even meta-

stable only? Why has no other rotational symmetry ever been

observed in an intermetallic quasicrystal? Is there a correla-

tion between the stability of quasicrystals and the embedding

dimension of their structures? How does the order of the

rotational symmetry N or the kind of the number N (prime

versus non-prime, for example) play into this? The study of

periodic average structures (PASs) of QPTs allows contribu-

tions to these fundamental questions from a geometrical point

of view. Specifically, it provides a tool for the classification of

QPTs according to their degree of average periodicity (DAP).

A PAS results from a proper projection of a QPT within the

higher-dimensional approach. It can be described by a period-

ic average lattice (PAL) decorated with projected hypersur-

faces (PHSs) so that all vertices of the respective QPT lie

within the boundaries of the PHSs. A close periodic approx-

imation of a QPT by one of the infinitely many possible PASs

is given if the PHSs are small (small deviation of the tiling

vertices from the PAL nodes) and if at the same time the

average occupancy factor of the PAS (pPAS) is close to 1.

Steurer & Haibach (1999) demonstrated the existence of

discrete PASs for the three prototypes of quasicrystal struc-

tures: the 1D Fibonacci sequence, the 2D Penrose tiling and

the 3D Ammann tiling. By providing lattices closely related to

the respective QPTs, PASs are of particular importance, for
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instance, for the understanding of quasicrystal-to-crystal phase

transformations (Steurer, 2000) and quasicrystal–crystal inter-

faces (Weisskopf et al., 2007).

The oblique-projection method proposed for the derivation

of PASs by Steurer & Haibach (1999) allows the investigation

of QPTs of any symmetry and dimensionality. Later, it was

applied to QPTs with eight-, ten-, 12- and 14-fold diffraction

symmetry as well (Sutter-Widmer et al., 2007a,b). It was shown

that PASs allow the prediction of band gaps in phononic

quasicrystals depending on their DAP.

With the discovery of a self-assembled colloidal water-based

mesoscopic quasicrystal with 18-fold diffraction symmetry

(Fischer et al., 2011), the investigation of PASs was extended

to the ninefold QPT. Phase transitions between this phase,

another quasiperiodic phase with 12-fold diffraction

symmetry, and a face-centered-cubic (f.c.c.) phase, were

observed for this system. The close correlation between the

two quasicrystalline phases and the f.c.c phase could be

visualized via their closely related PASs.

In order to identify a general trend of the DAP of QPTs

regarding dimensionality and rotational symmetry, we

extended the study of PASs to 11-, 13- and 15-fold QPTs. In

addition, we give in the following a detailed representation

and discussion of the PASs of the aforementioned axial QPTs

(Sutter-Widmer et al., 2007a,b; Fischer et al., 2011).

There are several fully equivalent ways to generate QPTs

within the higher-dimensional approach: the strip-projection

method and the embedding method. We use the former for the

derivation of the window, which defines the hypersurfaces

(HSs) in the latter. Furthermore, in both methods either a

reducible (canonical) or an irreducible basis can be employed.

In the following, we will use an irreducible basis for the eight-

and tenfold QPTs, and a reducible basis for all other QPTs. Of

course, the resulting PASs do not depend on the approach

used. The derivation method for PASs will be described in x2.

QPTs and their PASs will be discussed in groups according

to their higher-dimensional description. The 8- and 10-QPTs

are given in x4. They are the simplest cases, each one having

only a single 2D HS and the minimal dimension 4 (this is also

the rank of the vector module spanned by the reciprocal-space

basis).

In x5, the second group is treated, 7-, 11- and 13- QPTs of

rank 6, 10 and 12, respectively. The HSs for each of these

tilings are given by equidistant cuts of the window. The HSs

have the dimensions 4, 8 and 10, and are highly symmetric,

simple, convex polytopes.

The third and last group (x6) examines the 12-, 9- and 15-

QPTs of rank 4, 6 and 8, respectively. Like in the group before,

the HSs are given by equidistant cuts of the window perpen-

dicular to the redundant dimensions in the canonical

description. Unlike the cases in the second group, there is not

only one redundant dimension (the diagonal of the window)

but additional directions to which the HSs are perpendicular,

resulting in HSs with maximal dimension 2, 4 and 6. The

complex distribution of HSs in higher-dimensional space is

visualized with multidimensional combined scaling plots

(MCS plots, see x3).

The formulae needed for an analytic calculation of the

structure factors of the infinite systems are given by Steurer &

Deloudi (2009) for HSs of dimensions 2, 3 and 4. For HSs of

higher dimensions, they can be derived employing the same

method. These cumbersome derivations can be avoided by

calculating the Fourier coefficients of patches of QPTs, with

their size adjusted to the needed accuracy.

2. Derivation of PASs

The nD embedding space V = Vk � V? consists of two

orthogonal subspaces, the 2D physical space Vk, also called

par(allel)-space, and the (n � 2)D internal space V?, also

called perp(endicular)-space. In this Cartesian nD embedding

space spanned by the V basis, we define the basis of a

hyperlattice (D basis) given by vectors di (i = 1; . . . ; n). The

nD reciprocal basis D� is given by vectors d�i (i = 1; . . . ; n), and

is related to the direct basis by the condition di � d
�
j = �ij.

Orthogonal projection of D� onto physical space gives an

n-star of 2D reciprocal basis vectors a�i (i = 1; . . . ; n), spanning

a Z-module of rank n. The nD diffraction vectors are defined

as H = ðHk;H?Þ =
Pn

i¼1 hi d�i and Hk =
Pn

i¼1 hi a�i .

The derivation of a PAS works the same way for the nD

embedding method with an irreducible and with a canonical

basis. In both cases, orthogonal projection of the direct or

reciprocal hyperlattice onto dD par-space gives a dense set of

points. This is different in the case of an oblique projection

along rational directions, where all vertices of an nD hyper-

lattice project onto the nodes of a dD sublattice, the PAL of the

QPT (Steurer & Haibach, 1999). The HSs that decorate the

hyperlattice in the nD embedding method are projected upon

par-space in the same way as the lattice vertices, resulting in a

discrete set of PHSs. The deviation of the tiling vertices from

the PAL nodes is always within the boundaries of the PHSs.

The projection onto dD direct space corresponds to a dD

section of the reciprocal hyperlattice in Fourier space,

containing a sublattice of diffraction vectors. The ratio of the

sum of Bragg reflection intensities IPAS of the cut space to the

total sum of reflection intensities IQPT is a measure of the

representativeness of the PAS.

The PAS for a given QPT with d = 2 can be derived in the

following way:

(a) Choose two strong Bragg reflections with linearly

independent diffraction vectors Hk1 and Hk2. They span a

sublattice of diffraction vectors representing the Fourier

transform of the PAS. In nD, the corresponding reciprocal-

space vectors, H1 and H2, span the 2D cut space of the nD

reciprocal space.

(b) Find (n �2) linearly independent vectors, P�j , perpen-

dicular to the cut space, with P�j =
Pn

i¼1 pji d�i , j =

1; . . . ; ðn� 2Þ. Then the vectors Pj =
Pn

i¼1 pji di give the

(n � 2) projection directions. The projection onto Vk is

performed along Pj.

The point-group symmetry of the PAS, which is always a

crystallographic one, is necessarily lower than that of dD

QPTs with non-crystallographic symmetries. Consequently, a

one-to-one mapping of the tiling vertices to the lattice nodes
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of the PAL is impossible for topological reasons. Some of the

PAL nodes are not related to any tiling vertex, and some are

related to more than one. The QPT can therefore be described

as a displacive and occupational (density) modulation of its

underlying PAL.

Since the point densities of a QPT and its PAS have to be

equal, we can define pPAS as the ratio between the point

density of the QPT and that of the PAL. The point density of a

QPT can be calculated as the ratio of the volume of the HSs

and the volume of the nD unit cell of the hyperlattice.

In general, a QPT has infinitely many PASs (Cervellino &

Steurer, 2002). The geometrically best, i.e. most representa-

tive, PAS will have a lattice parameter aPAS comparable with

the edge length of the unit tiles ar, and pPAS close to 1. The size

of the PHSs is a measure of the deviation of the QPT from its

PAL. The smaller the PHSs are and the closer pPAS is to 1, the

higher is the DAP of the QPT.

Once the unit-cell parameters of the PAS of a quasiperiodic

structure are known, the PAS can as well be obtained by

taking the QPT vertices modulo this unit cell. All vertices are

mapped into the PHSs. But, while a PAS is unambiguously

defined by the cut space that is spanned by the two chosen

diffraction vectors in higher dimensions, this is not the case for

a PAS that is generated remaining in par-space only. In higher

dimensions, each choice of two diffraction vectors among the

complete set of diffraction vectors that lie in one cut space will

result in identical PASs. Generating a PAS while remaining

only in par-space, however, will result in the same size and

shape of PHSs, but different edge lengths of the average lattice

and therefore different pPAS. It is therefore important to

always choose the smallest possible basis in reciprocal par-

space for a certain cut space.

3. Multidimensional combined scaling (MCS) plot

The MCS plot is a way of visualizing the topology and

distribution of HSs in the nD hypercubic lattice for QPTs of

high dimensionality and complexity. The HSs for all tilings in

x6 are depicted in MCS plots.

The perp-space is divided into 2D subspaces, each given by

pairs of basis vectors of the V basis. We distinguish between

subspaces, in which the HSs have a volume, and the redundant

dimensions, in which the HSs occupy specific positions and

have zero volume. If there is more than one subspace, in which

the HSs project into geometrically equivalent shapes (iden-

tical image except for a permutation of the vertices), only one

of those subspaces will be visualized.

Orthogonal projection of the HSs on any non-redundant

subspace gives overlapping HSs centered around zero.

Combining this plot with an orthogonal projection upon a

redundant subspace means centering each projection of the

HSs around its position in the redundant subspace. Adequate

scaling of the two subspaces makes sure that there are no

overlaps of HSs belonging to different positions in the visua-

lization. In the case of further redundant dimensions, however,

there will be still HSs which are centered around the same

position and overlap. Then, the next redundant subspace can

be combined into the plot, which splits up those HSs in return.

Again, adequate scaling is used. This procedure can be repe-

ated for any number of dimensions, until every HS is centered

around its distinct position, and there are no overlaps. Finally,

a plot is obtained which is 2D in total, but visualizes the

topology of the HSs in nD.

4. Octagonal and decagonal tilings (8- and 10-QPTs)

4.1. Formalism

Both the 8- [often referred to as the Ammann–Beenker

tiling; see Ammann et al. (1992)] and the 10-QPT have 4D

minimum embedding spaces. Each one consists of two 2D

orthogonal subspaces Vk and V?. The 2D par-space reciprocal

basis vectors are given by a�i = a�½cosð2�i=8Þ, sinð2�i=8Þ�, with

i = 1; . . . ; 4. The 4D hyperlattice of the 8-QPT is spanned by

the basis vectors

di ¼
1

2a�

cos 2�i
8

sin 2�i
8

cos 6�i
8

sin 6�i
8

0
BB@

1
CCA

V

; with i ¼ 1; . . . ; 4: ð1Þ

The HS of the 8-QPT is an octagon defined by the vectors aHS
i ,

with

aHS
i ¼

1

2a�
1þ

1

21=2

� �1=2
0

0

cos ð2i�1Þ�
8

sin ð2i�1Þ�
8

0
BB@

1
CCA

V

; with i ¼ 1; . . . ; 8:

ð2Þ

The unit tiles edge length ar is related to the length a� of the

2D par-space reciprocal basis vectors by ar = 1=2a�, and the

lattice spanned by the vectors di is hypercubic.

An example of an 8-QPT and its generating HS is depicted

in Fig. 1,1 with vertices colored according to their coordina-

tion. The partition of the HS, i.e. the subdivision in parts that

generate vertices with the same coordination, is indicated by

the color code of the tiling. The diffraction pattern is shown in

Fig. 2.

The basis of the 4D hyperlattice of the 10-QPT is defined as

di ¼
2

5a�

cos 2i�
5 � 1

sin 2i�
5

cos 6i�
5 � 1

sin 6i�
5

0
BB@

1
CCA

V

; with i ¼ 1; . . . ; 4; ð3Þ

and the 2D par-space reciprocal basis vectors are given by a�i =

a�½cosð2�i=10Þ, sinð2�i=10Þ�, with i = 1; . . . ; 4. The HS of the

10-QPT is a decagon given by the vectors aHS
i , with

aHS
i ¼

2

5a�
�
ð5þ 51=2Þ

1=2

21=2

0

0

cos i�
5 þ

�
2

� �
sin i�

5 þ
�
2

� �

0
BB@

1
CCA

V

; ð4Þ

research papers

268 Deloudi and Steurer � N-fold quasiperiodic tilings Acta Cryst. (2012). A68, 266–277

1 Larger versions of all of the figures presented in this paper have been
deposited in the IUCr electronic archives (Reference: DM5021). Services for
accessing these data are described at the back of the journal.



where i runs from 1 to 10 and 1 < � < �.

Different classes of 10-QPTs can be

generated for different values of �, and

therewith for different resulting sizes

of the HS (see Masakova et al., 2005).

Values outside this range give �-scaled

tilings, but no new tiling classes. As an

example, a tiling generated with � =

1.117 is depicted in Fig. 3. It is the DT1/

VT1 tiling according to Masakova et

al. (2005), containing copies of five

different kinds of Delone tiles: a small

and a large pentagon, two different

isosceles triangles and a trapezoid. The

Delone tiles have two different edge

lengths corresponding to the edge

lengths of the small and large pentagon.

ar is defined as the edge length of

the large pentagon, with ar = 2=5a�.

The lattice spanned by the vectors di

is hyperrhombohedral; it would be

hypercubic in the 5D reducible

description.

4.2. PASs

In Fig. 2, the structure factors of the

8-QPT are shown as a function of jH?j

and jHkj. Letters a–f in Fig. 2(a) mark

symmetrically equivalent reflections

(chosen for the derivation of the

different PASs), which lie on circles with

radius jHkj. Symmetrically equivalent

reflections all have the same value of

jH?j. In the following, we describe two

non-equivalent variants of choosing

the PAS-defining pairs of diffraction

vectors. One leads to a rhombic unit cell

of the PAS, the other to a square one.

The indices of the diffraction vectors

defining each PAS are listed in Fig. 2.

The best PASs for the 8-QPT are

defined by reflections with strong

intensities on the circle marked by the

letter b in Fig. 2(a). The PHSs and the

tiling modulo one unit cell (dotted part

of the HS) are given in Fig. 2(c) for each

PAS. The relationships between the two

best PASs and the respective tilings are

illustrated in Figs. 2(d) and 2(e). The

sum of intensities in the cut space is

approximately 0.7 and 1%, respectively,

of the total intensity for these two PASs.

Each type of PAS represents therefore

approximately 3% and 4%, respectively,

of the total diffraction intensity, if the

four equivalent orientations of the PAS
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Figure 2
(a) Diffraction pattern of the 8-QPT in par-space. The diffraction vectors of the investigated PASs
are located on circles marked by letters a–f. The reciprocal lattices for two different combinations of
diffraction vectors of type b are shown in red and blue, respectively. Diffraction vectors on these
grids lie on the corresponding cut planes in nD reciprocal space. (b) Structure factors FðjH?jÞ of
8-QPT as a function of jH?j. There is only one branch of FðjH?jÞ, as expected for a single HS
positioned on the origin of the hypercrystal structure. (c) Vertices of the 8-QPT modulo one unit
cell of different PAS denoted with blue and red indices in (a), and PHS. Lattice parameters, l in units
of ar, and pPAS are given in the figure. (d, e): 8-QPT with overlaid PAS defined by the diffraction
vectors ð0111ÞD� ; ð110�11ÞD� (d) and ð0111ÞD� ; ð1110ÞD� (e) shown in blue/red in (a). The small blue/red
undistorted/distorted octagons on the grids correspond to PHS. IPAS is given relative to IQPT.

Figure 1
(Left) 8-QPT with the six different vertex types color-coded. This 8-QPT, with squares and rhombs
as unit tiles, corresponds to that described by Socolar (1989). (Right) Partitioning of the HS located
at the origin of the 4D hypercubic unit cell shown together with the six vertex configurations A–F.
Each point of the HS corresponds to one vertex of the tiling.



are taken into account. The PAS marked by the letter d in Fig.

2(a) has the same cut space as the PAS marked by the letter b.

It visualizes the importance of choosing the smallest possible

diffraction vectors as basis of the cut space, if one generates

the PAS by a modulo function, as discussed at the end of x2.

Here, the wrong choice of basis vectors generates a PAS with

too small edge length.

In the case of the 10-QPT, among all possible PASs resulting

from reflections with strong intensities that have been inves-

tigated, the best one is based on the pair of diffraction vectors

ð000�11ÞD� and ð00�110ÞD� . In this PAS [blue grid in Fig. 3(d), blue

PHSs in Fig. 3(b)], only 9% of all PAL nodes do not corre-

spond to tiling vertices. The PAS resulting from the symme-

trically equivalent reflections defining the red grid in Fig. 3(d)

and the red PHSs in Fig. 3(b) has a much larger pPAS of 1.4727

as well as larger PHSs, that means larger deviations of the

tiling vertices from the PAL nodes. Both tilings discussed in

this section have a high DAP.

5. Heptagonal, hendecagonal and triskaidecagonal
tilings (7-, 11- and 13-QPTs)

5.1. Formalism

All diffraction vectors Hk of N-QPTs, with N = 7, 11 and 13,

can be represented on a 2D basis with vectors a�i =

a�½cosð2�i=NÞ, sinð2�i=NÞ�, with i = 1; . . . ;N. The projected

nD diffraction vectors are given by Hk =
PN

i¼1 hi a�i . Based on

the number of independent reciprocal basis vectors necessary

to index the reflections with integers, the rank of the Z-module

and the dimension of the embedding spaces in their irre-

ducible variants results to 6, 10 or 12, respectively. For the 6D

irreducible representation of the sevenfold tiling, see Steurer

& Deloudi (2009). We will use the reducible canonical setting

in the following.

The 7D hypercubic lattice (D basis) of the 7-QPT is defined

by the vectors

di ¼
2

7a�

cosð2�i=7Þ

sinð2�i=7Þ

cosð4�i=7Þ

sinð4�i=7Þ

cosð6�i=7Þ

sinð6�i=7Þ

1=
ffiffiffi
2
p

0
BBBBBBBB@

1
CCCCCCCCA

V

; with i ¼ 1; . . . ; 7: ð5Þ

The unit tiles edge length ar is related to the length a� of

the 2D par-space reciprocal basis vectors by ar = 2=7a�.

The vectors v0 and w0 span the 2D par-space Vk, vk and wk

span V?k with k = 1, 2, and d spans V?3 , with V = Vk � V?

= Vk � V?1 � V?2 � V?3 . In the D basis, they can be

expressed as vk = ð2=7Þ1=2
ð1=a�Þ cos½ðkþ 1Þ2�i=7�D, wk =

ð2=7Þ1=2
ð1=a�Þsin½ðkþ 1Þ2�i=7�D, with k = 1; . . . ; 2, and d =

½1=ð7a�Þ1=2
�ð1111111ÞD.

The 11- and 13-QPTs show a similar division in subspaces as

the 7-QPT, with the extension of V? by two and three 2D

subspaces, respectively.

11-QPT: vk and wk span V?k for k = 1; . . . ; 4, and d spans

V?5 . V is given by V = Vk � V? = Vk � V?1 � V?2 �

V?3 � V?4 � V?5 . It is vk = ð2=11Þ1=2
ð1=a�Þ cos½ðkþ 1Þ2�i=11�D,

wk = ð2=11Þ1=2
ð1=a�Þ sin½ðkþ 1Þ2�i=11�D and d = ð1=111=2a�Þ �

ð11111111111ÞD.

The nD hypercubic lattice (D basis) is given by the vectors

di ¼
2

11a�

cosð2�i=11Þ

sinð2�i=11Þ

cosð4�i=11Þ

sinð4�i=11Þ

cosð6�i=11Þ

sinð6�i=11Þ

cosð8�i=11Þ

sinð8�i=11Þ

cosð10�i=11Þ

sinð10�i=11Þ

1=
ffiffiffi
2
p

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

V

; with i ¼ 1; . . . ; 11: ð6Þ

The unit tiles edge length ar is related to the length a� of the

2D par-space reciprocal basis vectors by ar = 2=11a�.
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Figure 3
The 10-QPTs shown in (a) and (b) consist of copies of five different kinds
of Delone tiles: a small and a large pentagon, two isosceles triangles and a
trapezoid. ar = 1 refers to the edge length of the large pentagon. The
tilings are overlaid with the two best PASs. The decagonal HS have been
distorted by the oblique projection. pPAS is 1.4727 for the PAS depicted in
red, and 0.9102 for the PAS in blue. IPAS is given relative to IQPT. (c)
Structure factors of the 10-QPT as a function of jH?j. There is only one
branch of FðjH?jÞ as expected for a single HS positioned on the origin of
the hypercrystal structure. (d) Diffraction pattern of the 10-QPT in par-
space. The diffraction vectors of the investigated PASs are located on
circles marked by letters a–e. The reciprocal lattices for two different
combinations of diffraction vectors of type a are shown in red and blue,
respectively. Diffraction vectors on these grids lie on the corresponding
cut planes in nD reciprocal space. Note that the diffraction vector
ð00�11�11ÞD� , marked with the letter b, also lies on the cut space defined by
the blue grid.



13-QPT: vk and wk span V?k for k = 1; . . . ; 5, and d spans

V?6 . V is then V = Vk � V? = Vk � V?1 � V?2 � V?3 � V?4
� V?5 � V?6 . It is vk = ð2=13Þ1=2

ð1=a�Þ cos½ðkþ 1Þ2�i=13�D,

wk = ð2=13Þ1=2
ð1=a�Þ sin½ðkþ 1Þ2�i=13�D and d = ð1=131=2a�Þ

�ð1111111111111ÞD.

The nD hypercubic lattice (D basis) is given by the vectors

di ¼
2

13a�

cosð2�i=13Þ

sinð2�i=13Þ

cosð4�i=13Þ

sinð4�i=13Þ

cosð6�i=13Þ

sinð6�i=13Þ

cosð8�i=13Þ

sinð8�i=13Þ

cosð10�i=13Þ

sinð10�i=13Þ

cosð11�i=13Þ

sinð11�i=13Þ

1=
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2
p
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1
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V

; with i ¼ 1; . . . ; 13: ð7Þ

The unit tiles edge length ar is related to

the length a� of the 2D par-space reci-

procal basis vectors by ar = 2=13a�.

The ðn� 2ÞD windows of these

N-QPTs, obtained by projection of the

nD unit cell onto V?, are zonohedra

with N-fold axial symmetry (see Fig. 4).

The nD strip needed in the strip-

projection method is defined as an infi-

nite extension of the window along the

par-space. If a hyperlattice point is

inside the strip, it generates a vertex of

the tiling after projection onto Vk. If all

hyperlattice points inside the strip are

projected onto V?, they form n equidi-

stant ðn� 3ÞD hyperplanes (polytopes)

perpendicular to d = ð111 . . . 1ÞD (see

Fig. 4).

These polytopes correspond to the

HSs that decorate the hyperlattice in

the nD embedding method. Shifts of

the window along d result in different

positions for the hyperplanes in the

window and therewith in a different

shape of the HSs. Three examples of

such tilings are shown in Fig. 5 for the

7-QPT.

If the window is placed with its origin

on the origin of the hyperlattice, the

convex hull of the ith HS can be easily

derived analytically. It is defined by the

perp-space coordinates of the unit-cell

vertices fulfilling
Pn

j¼1 ajk = i, with i =

0; . . . ; n� 1, for the n HSs and

ða1k; . . . ; ankÞD the kth vertex of the unit

cell given in the D basis.

The n HSs are located at ði=nÞd, i = 0; . . . ; n� 1, on the

diagonal of the hyperrhombohedral window. The 0D HS is

located at the origin (i = 0). Neighboring HSs are in anti-

position to each other, as can be seen in Fig. 4. The (n� 1)

HSs within the zonohedron are related by an inversion center

at one half of the body diagonal. There are therefore

ðN � 1Þ=2 independent non-zero HSs for the N-QPT, with N =

7, 11 or 13, respectively.

As will be shown in x6 for the N-QPTs with N = 9, 12 and 15,

it is possible to have several redundant dimensions, which

means that the HSs are perpendicular to more than one

direction in V?. In the same way as the HSs result as equi-

distant cuts perpendicular to d, each HS is again divided into a

subset of HSs perpendicular to the other redundant dimen-

sions. This leads to a lower dimensionality of the HSs, but also

to a more complex topology of their subdivided volumes.

Sevenfold symmetry is the lowest symmetry that is asso-

ciated with a cubic irrational number, and shows therefore
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Figure 4
Projection windows of the 7-, 11- and 13-QPTs. The window of a QPT (orthogonal projection of the
hyperlattice unit cell onto V?) is a zonohedron of dimension n� 2. For the 7-QPT (a), 11-QPT (b)
and 13-QPT (c), the convex hulls of the windows in the subspace spanned by v1, w1 and d (V?1 � d)
are given in three different views: (left and middle) view along, and perpendicular to d; (right)
slightly rotated view perpendicular to d, where the shape of the HSs is emphasized. The HSs result
from n equidistant cuts of the window perpendicular to d, at i=7ð1111111ÞD, i=11ð11111111111ÞD and
i=13ð1111111111111ÞD, respectively.



unusual properties, as do tilings with axial symmetries 9, 11

and greater than 12. Since all tilings with those symmetries

considered within this work are canonical projection tilings,

they all fulfill the Pisot–Vijayaraghavan property (Vijayar-

aghavan, 1941) as required for finite (non-fractal) HSs and

have a pure point Fourier spectrum. Consequently, those

tilings cannot be substitution tilings (Harriss, 2005).

5.2. PASs

Since the QPTs are described with a reducible nD basis,

ðn� 2ÞD projections are necessary to generate the corre-

sponding PASs. Thereby, the dimension

(n� 3) of the HSs is reduced to 2. This

has direct implications on the distribu-

tion functions of the deviations of the

QPT vertices from the respective PALs.

In the eight- and tenfold cases this

distribution can be described as a simple

step function. For all tilings with HSs of

a dimension higher than two, however,

the distribution of deviations corre-

sponds to the onto par-space projected

volume function of the HSs. Conse-

quently, the higher the dimensionality

of the HSs the more complex this

function becomes.

In the following, several symme-

trically non-equivalent PASs, with pPAS

close to 1, will be discussed for the

7-QPT. For this purpose, two reflections

with strong intensities are chosen, that

are related to PAS lattice parameters

close to the tiling edge length. The

resulting PAS unit cells correspond to

the three different unit tiles of the

7-QPT. In these PASs [Figs. 5(c) and

5(d)], the symmetry of the HSs is not

preserved in the oblique projections,

and PHSs that are centered around

neighboring PAS nodes can show large

overlaps (Fig. 5c). The decomposition of

heavily overlapping PHSs [Fig. 5(c),

right side] is shown in Fig. 5(d).

The best PAS for the 7-QPT [Fig.

5(c), left side] has a pPAS close to 1 (only

4% of the PAS unit tiles are not occu-

pied), but its unit cell is almost

completely covered with PHSs. On the

other hand, the best PAS with small

maximal deviation of the tiling vertices

from the lattice nodes [Fig. 5(e), left

side] has only a pPAS of 0.5670. Almost

half of the PHSs are not occupied. The

7-QPT shows therefore a low DAP; it

resembles a strongly density (vacancy)

modulated structure.

Even lower DAPs are calculated for the 11-QPT and the

13-QPT. From a general point of view, for every QPT PASs

can be constructed with very small deviations of the tiling

vertices from the PAL nodes. For the limit of the PAS unit-cell

parameters approaching zero, the deviations of the tiling

vertices also go to zero, as well as the pPAS of the PHSs

however. In this case, the description of a QPT by its PAS no

longer makes any sense from a physical point of view.

In Figs. 6 and 7, an 11-QPT and a 13-QPT, respectively, are

shown together with their PASs. Furthermore, the growth of

the PHSs as a function of the patch size of finite tilings modulo

one unit cell is illustrated in several examples. In the case of
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Figure 5
(a) The six HSs of the 7-QPT with a non-zero volume located at i=7ð1111111ÞD, i = 1; . . . ; 6, in the
canonical description. They are related by an inversion center in the origin and at 1=2ð1111111ÞD.
The HSs are 4D polytopes shown in an orthogonal projection upon one of the two invariant
subspaces of V?. Projection upon the second subspace results in the same image, but with
permutated projected vertices. (b) By shifting the acceptance window along perp-space, different
tilings can be produced in the canonical description. Three tilings as created from 7D space by
placing the center of the window at ð000000kÞV , with (left) k = 0 (singular case), (center) k = 0.75,
(right) k = 1.25, with a� = 2=71=2. (c) Unit cell of the PAS with overlapping PHSs. Depicted are all
symmetrically non-equivalent PASs that correspond to the diffraction vectors ð10�11�11011ÞD� and
ð10�11�11�1101ÞD� (left), ð110�11�1101ÞD� (center) and ð110�11�11�110ÞD� (right). In all cases the PHSs almost fill the
unit cell of the PAL. Black lines mark the outer boundary of the PHSs, points result from the 7-QPT
modulo one unit cell of the PAL. aPAS (in units of ar) and pPAS are given in the figure. (d)
Decomposition of the PHS in the individual parts for one PAS. (e) PASs corresponding to the
diffraction vectors ð1�11�22�22022ÞD� and ð20�22�22�1112ÞD� (left), ð21�11�22�2202ÞD� (center), ð220�22�22�111ÞD� (right).



infinite QPTs taken modulo one unit cell of their respective

PASs, the vertices would fill the unit cells densely.

In the case of the 11-QPT, the reciprocal PAS unit cell is

defined by the reflection 110�11�11�11�11�11�1101 and its symmetrically

equivalent counterpart that gives a PAL with an angle 4�=11

between the basis vectors in direct par-space. The unit-cell

parameters result in aPAS = 0:9759ar. The radii of the finite

QPT patches are (from top to bottom of Fig. 7c) 20, 35, 50 and

65, with the number of vertices 1585, 4841, 9923 and 16831,

respectively.

In the case of the 13-QPT, the reciprocal PAS unit cell is

spanned by the reflection 1110�11�11�11�11�11�11011 and its symmetrically

equivalent counterpart that gives a PAL with an angle 4�=13

between the basis vectors in direct par-space. The unit-cell

parameters result in aPAS = 0:9805ar. The radii of the finite

QPT patches are (from top to bottom of Fig. 7c) 20, 35 and 50,

with the number of vertices 1574, 4876 and 9894, respectively.

6. Dodecagonal, enneagonal and pentakaidecagonal
tilings (12-, 9- and 15-QPTs)

6.1. Formalism

All diffraction vectors Hk of N-QPTs with N = 12, 9 and 15

can be represented on a 2D par-space basis with vectors a�i =
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Figure 6
(a) The 11 HSs of the 11-QPT are located on ði=11Þð11111111111ÞD, i =
0; . . . ; 10, in the canonical description. They are related by an inversion
center in the origin and at 1=2ð11111111111ÞD. The HSs are 8D polytopes.
They are shown in an orthogonal projection upon one of the four 2D
invariant subspaces of V?. (b) Tiling with overlaid PAS. (c) PAS and a
finite tiling modulo one unit cell of the PAL, for four different patch sizes
of the 11-QPT, growing from top to bottom (radii of the tilings/number of
vertices: 20/1585, 35/4841, 50/9923 and 65/16831). The diffraction vectors
defining the PAS are ð110�11�11�11�11�11�1101ÞD� and the symmetrically equivalent
one that gives basis vectors of the PAL with the opening angle 4�=11.

Figure 7
(a) The 13 HSs of the 13-QPT are located on ði=13Þð1111111111111ÞD, i =
0; . . . ; 12, in the canonical description. They are related by an inversion
center in the origin and at 1=2ð1111111111111ÞD. The HSs are 10D
polytopes. They are shown in an orthogonal projection upon one of the
four 2D invariant subspaces of V?. (b) Tiling with overlaid PAS. (c) PAS
and a finite tiling modulo one unit cell, for three different patch sizes of
the 13-QPT, growing from top to bottom (radii of the tilings/number of
vertices: 20/1574, 35/4876 and 50/9894). The diffraction vectors defining
the PAS are ð1110�11�11�11�11�11�11011ÞD� and the symmetrically equivalent one
that gives basis vectors of the PAL with the opening angle 4�=13.



a�½cosð2�i=NÞ, sinð2�i=NÞ�, with i = 1; . . . ;N. The projected

nD diffraction vectors are given by Hk =
PN

i¼1 hi a�i . Based on

the number of independent reciprocal basis vectors necessary

to index the diffraction vectors with integers, the rank of the

Z-module and the dimension of the embedding spaces in their

irreducible variants results to 4, 6 or 8, respectively. In the

canonical description, 6, 9 or 15D, respectively, hyperlattices

are needed to generate the QPTs.

For the 12-QPT, the nD hypercubic lattice (D basis) is given

by the vectors

di ¼
1

3a�

1 c1 �c2 �c3 c4 c2

0 s1 �s2 �s3 s4 s2

1 c5 c4 �c3 �c2 c1

0 s5 s4 �s3 �s2 s1
1ffiffi
2
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; ð8Þ

with i = 1; . . . ; 6. The unit tiles edge length ar is related to the

length a� of the 2D par-space reciprocal basis vectors by ar =

1=3a�. The 12-QPT has, in the canonical description, three

orthogonal subspaces spanned by the vectors v0 and w0

(par-space Vk), and vk and wk (perp-space V?k for k = 1, 2). V

is then decomposed to V = Vk � V? = Vk � V?1 � V?2 .

In the D basis, they can be expressed as vk = ð1=31=2a�Þ �

cos½ðkþ 1Þ2�i=12�D, wk = ð1=31=2a�Þ sin½ðkþ 1Þ2�i=12�D. The

vector w2 corresponds to the usual diagonal d =

ð1=31=2a�Þð1=21=2Þð111111ÞD of the nD unit cell, while v2 =

ð1=31=2a�Þð1=21=2Þð1�111�111�11ÞD is a diagonal vector in a different

direction. Both these directions are redundant, and together

they build a 2D subspace (V?2 ) to which the HSs are ortho-

gonal. This is illustrated in Fig. 8. The HSs are 2D and given by

six equidistant cuts of the window perpendicular to the

redundant directions at ði=6Þðv2 þ w2Þ = ði=6Þð1�111�111�11ÞD +

ð111111ÞD with i = 1; . . . ; 6. The 12-QPT is generated by a

window which is centered at the origin of the hyperlattice.

The ninefold tiling has five orthogonal subspaces. Therein,

the vectors v0 and w0 span the 2D par-space Vk, vk and wk span

V?k for k = 1; . . . ; 3, and d spans V?4 , with V = Vk � V? = Vk

� V?1 � V?2 � V?3 � V?4 . It is vk = ð2=9Þ1=2
ð1=a�Þ �

cos½ðkþ 1Þ2�i=9�D, wk = ð2=9Þ1=2
ð1=a�Þ sin½ðkþ 1Þ2�i=9�D and

d = ð1=91=2a�Þð111111111ÞD.

The strip cuts a 7D slab parallel to the

2D par-space from the 9D lattice. The

HSs are given by nine equidistant cuts

perpendicular to d. For every additional

redundant dimension (v2 and w2), the

HSs are subdivided into sets of HSs, as

shown in Fig. 9. This means that none of

the HSs has a volume in V?2 , but sepa-

rate HSs cut V?2 at different coordi-

nates. The resulting HSs are of the

dimension 0, 2 and 4. Fig. 9(b) shows a

MCS plot of the four sets of indepen-

dent HSs, in V?2 and V?1 . They are

located at i=9ð111111111ÞD, i = 1; . . . ; 4,

related to the HSs at i=9ð111111111ÞD,

i = 5; . . . ; 8, by an inversion center

in the origin and at 1=2ð111111111ÞD.

Projection upon V?3 would give the

same image as projection upon V?2 , but

with permutated vertices.

The nD hypercubic lattice (D basis) is

given by the vectors

di ¼
2

9a�

cosð2�i=9Þ

sinð2�i=9Þ

cosð4�i=9Þ

sinð4�i=9Þ

cosð6�i=9Þ

sinð6�i=9Þ

cosð8�i=9Þ

sinð8�i=9Þ

1=
ffiffiffi
2
p

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

V

; ð9Þ

with i = 1; . . . ; 9. The unit tiles edge

length ar is related to the length a� of

the 2D par-space reciprocal basis

vectors by ar = 2=9a�.
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Figure 8
(a) Window function of the 12-QPT shown simultaneously for dimensions V?1 � v2 and V?1 � w2,
with the HSs in the projection upon V?1 � w2. They belong to three groups, denoted c1; c2; c3, each
consisting of three HSs. (b) MCS plot of the HSs resulting from cuts of the strip centered at the
origin of the hyperlattice. The gray outlines of each HS are given in a subplot of V?1 , on each node of
V?2 . The positions of the HSs in V?2 are plotted by their occupation of nodes on the red grid spanned
by v2 and w2. (c) The HSs are given by six equidistant cuts of the window perpendicular to V?2 , along
the direction v2 þ w2.



The 15-fold tiling is analogous to the ninefold tiling, with

three additional perp-subspaces, where the last one, V?7 , is

spanned by d. It is vk = ð2=15Þ1=2
ð1=a�Þ cos½ðkþ 1Þ2�i=15�D, wk

= ð2=15Þ1=2
ð1=a�Þ sin½ðkþ 1Þ2�i=15�D and d = ð1=151=2a�Þ �

ð111111111111111ÞD. The unit tiles edge length ar is related to

the length a� of the 2D par-space reciprocal basis vectors by

ar = 2=15a�, and the nD hypercubic lattice (D basis) is given by

the vectors

di ¼
2

15a�

cosð2�i=15Þ

sinð2�i=15Þ

cosð4�i=15Þ

sinð4�i=15Þ

cosð6�i=15Þ

sinð6�i=15Þ
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sinð8�i=15Þ

cosð10�i=15Þ

sinð10�i=15Þ

cosð11�i=15Þ

sinð11�i=15Þ

cosð12�i=15Þ

sinð12�i=15Þ

1=
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V

; with i ¼ 1; . . . ; 15: ð10Þ

The strip cuts a 13D slab parallel to the 2D par-space from the

15D lattice. There are 15 HS sets in the canonical description,

located at i=15ð111111111111111ÞD, i = 0; . . . ; 14, and related

by an inversion center in the origin and

at 1=2ð111111111111111ÞD. They have a

volume only in the subspaces V?1 , V?3
and V?6 , and are perpendicular to all

others. Fig. 10 shows the HS sets at i =

4; . . . ; 7 in a detailed MCS plot.

6.2. PASs

The best PAS for the 12-QPT is

shown in Fig. 11(b) (top). The corre-

sponding reflections are 01�22�1100 and

21000�11. The unit-cell parameter of the

centered PAS is aPAS = 0.9282, and only

7% of the unit tiles of the PAS do not

contain a tiling vertex. The distribution

of vertices is uniform in each PHS, and

the deviation density adds up with the

number of overlapping PHSs within

their boundaries. A PAS without

centering and with small maximal

deviation of the vertices from the PAL

nodes is given in Fig. 11(b) (bottom).

Here, all HSs project onto each other.

The corresponding reflections are

01�22�1100 and 21000�11, the unit-cell para-

meter of the PAS is aPAS = 0.4641, and

pPAS = 0.2679 is very small. The

symmetry of the HSs is preserved by the

oblique projections in both PASs.

An example of a 9-QPT is shown in Fig. 12(a). It is gener-

ated from a 9D hypercubic lattice by placing the center of the

window at ð00000000kÞV, with k = 0.001. The best PAS for the

9-QPT is shown in Fig. 12(b). The reflection 1110�22�22�22�220 and

one of its symmetrically equivalent counterparts are chosen to

obtain a PAL with an angle 6�=9 = 2�=3 between the basis

vectors. The unit-cell parameter of the PAS is aPAS = 0.6267.

The PAS has pPAS = 1.2344 and a rather small maximal

deviation of the tiling vertices from the PAL nodes. The PHSs

are centered at three sites: ð0 0ÞPAS, ð1=3 2=3ÞPAS and

ð2=3 1=3ÞPAS. The density distribution of deviations from the

PAL corresponds to the volume function of the PHS. As in the

case of the 7-QPT, the 4D HSs project onto the 2D par-space

and give a non-homogeneous point distribution in the PAS.

Contrary to the case of the 7-QPT, however, there is a PAS

with small maximal deviation and reasonable pPAS.

In the case of the 15-QPT, the DAP does not allow a

representative description of the infinite QPT via one of its

PASs, analogously to the cases of the 11- and 13-QPT. In

Fig. 13(a) a 15-QPT is depicted, and in (b)–(d) a PAS and a

finite patch of the 15-QPT modulo one unit cell are shown for

three different patch sizes. The infinite tiling taken modulo

one unit cell of the PAS would fill the cell densely and inho-

mogeneously. The corresponding reflections chosen for

the PAS in (b) are 01001�11�11�11�11�11�11�11�1111, and in (c) and (d)

111100�11�11�11�11�11�11011. The opening angles of the PAL basis

vectors are 4�=15 in (b) and (c), and 10�=15 = 2�=3 in (d).
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Figure 9
(a) Three views of the window of the 9-QPT in the canonical 9D description. The HSs are
perpendicular to V?2 and d. Each node shown in (a) represents therefore one HS located on nine
equidistant cuts perpendicular to d, as indicated in gray on the right. (b) MCS plot of the four sets
of independent HSs, located at i=9ð111111111ÞD, i = 1; . . . ; 4. They are related to the HSs at
i=9ð111111111ÞD, i = 5; . . . ; 8, by an inversion center in the origin and at 1=2ð111111111ÞD. The non-
trivial HSs are 2D and 4D polytopes, and have only a volume in V?1 and V?3 . Their positions in V?2
are given by red dots, and their projected volume in V?1 is given in black. The lines give the convex
hull of the HSs. The dimensionality of the non-trivial HSs is 2 and 4. Projection upon V?3 would give
the same image as projection upon V?2 , but with permutated vertices.



7. Concluding remarks

The PASs of the 2D QPTs with

diffraction symmetries N = 7, 8, 9, 10,

11, 12, 13 and 15 strongly differ in the

size of the PHSs relative to the unit-cell

dimensions and in their pPAS. Since the

vertex distribution in an nD HS is

homogeneous, so is the projection of

one single HS, if its dimension is not

reduced by the projection. This is, for

instance, the case for the eight- and

tenfold tilings.

In the case of 7-, 9-, 11-, 12-, 13- and

15-QPTs, the vertices originate from

several HSs, which overlap in their

projection for all PASs of physical

relevance (i.e. those generated by

reflections with strong intensities). In

the case of the 12-QPT, the HSs and

their projections are 2D and homo-

geneous. However, parts of the HSs are

projected upon each other in the PAS.

The resulting density distribution can

then be described by a simple step

function, following the boundaries of

the single PHSs and their overlaps.

There is a noticeable similarity between

the PASs of the 9-QPT and the 12-QPT,

which both have a simple factorization

into parameters related to crystal-

lographic symmetries: 9 = 3� 3 and

12 = 3� 4.

The cases of the 7-, 9-, 11-, 13- and 15-

QPTs, however, are more complicated

than that of the 12-QPT, since they all

have more HSs whose dimensionality is
reduced by their projection onto 2D

par-space. The projected density distri-

bution is therefore not homogeneous.

Although the density distribution of a

PAS can be taken as a measure of the

DAP of the respective QPT, this concept

has to be treated carefully. It is only

reliable if the total diffraction intensity

represented by the PAS is large, and if

pPAS of the PHS is close to 1. The 8-, 10-

and 12-QPTs, for instance, can be

closely represented by their PAS. The 7-

and 9-QPTs show a higher degree of

complexity in their PAS, and, finally, the

11-, 13- and 15-QPTs elude a reasonable

periodic approximation and show the

lowest DAP and, consequently, the

highest degree of quasiperiodicity.

There is a clear general trend to a

lower DAP with increasing rank of the
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Figure 10
In the case of the 15-QPT, there are 15 HS sets in the canonical description, located at
i=15ð111111111111111ÞD, i = 0; . . . ; 14. They are related by an inversion center in the origin and at
1=2ð111111111111111ÞD. They have a volume only in the subspaces V?1 , V?3 and V?6 , and are
perpendicular to all others. The HS sets, resulting from the cuts at i = 4 and 5, are shown in a MCS
plot. The HSs are perpendicular to V?2 and V?4 . Their positions in these two subspaces are marked
on the left. Different colors indicate different dimensionalities of the HSs. Dimension/color: 6/
purple, 5/blue, 4/green, 3/black, 2/cyan and 0,1/red. Only the six-dimensional HSs are shown in the
middle part of (a) and (b), in a MCS plot with one additional subspace. On the right side of (a) the
six-dimensional HSs for i = 4 are shown in an orthogonal projection on V?1 , as opposed to the
combined scaling plot of V?2 , V?4 and V?1 in the middle. On the right side of (b) the central nine HSs
at i = 5 are shown enlarged, again in a combined scaling plot. The lines give the convex hulls of the
HSs.

Figure 11
(a) 12-QPT generated by the canonical projection method, with the acceptance window centered at
the origin of the 6D lattice. (b) (Top) Centered PAS with overlapping PHSs. The chosen diffraction
vectors are ð01�22�1100ÞD� and ð21000�11ÞD� . (Bottom) PAS with complete overlap of the HSs belonging
to one lattice node and small maximal deviation of the tiling vertices from the PAL. The reciprocal
lattice of the PAS is defined by the diffraction vectors ð32000�22ÞD� and ð00�22�3320ÞD� . aPAS (in units of
ar) and pPAS are given in the figure.



QPT (minimum dimensionality of the embedding space V).

This is true for both N prime or non-prime within their own

categories. N-QPTs with N non-prime and of low dimen-

sionality show the best, most distinct, PASs and have the

highest DAP.

This is in agreement with observations of occurring

symmetries and stability of metallic as well as soft quasicrys-

tals, and gives us a geometrical interpretation of the observed

trends. Generally speaking, the higher the dimensionality of a

system, the lower is the DAP, and it is also less physically

favorable; N being a non-prime number seems to be advan-

tageous over N being a prime number.
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Figure 12
(a) 9-QPT with overlaid PAS, generated from a 9D hypercubic lattice by
placing the center of the window at ð00000000kÞV, with k = 0.001. (b) Unit
cell of the PAS defined by the diffraction vectors ð1110�22�22�22�220ÞD� and
ð�22�2201110�22�22ÞD� (opening angle 6�=9 = 2�=3). aPAS (in units of ar) and pPAS

are given in the figure.

Figure 13
(a) 15-QPT with overlaid PAS, generated from a 15D hypercubic lattice
by placing the center of the window at ð00000000000000kÞV, with k =
0.001. (b)–(d) PAS and finite patch of the 15-QPT modulo one unit cell
for three different patch sizes, increasing from left to right (radii of the
tilings/number of vertices: 20/1591, 35/4801 and 50/9991). The diffraction
vectors defining the PAS in (b) are ð01001�11�11�11�11�11�11�11�1111ÞD� , in (c) and (d)
ð111100�11�11�11�11�11�11011ÞD� . The opening angles are in (b) and (c) 4�=15, in (d)
10�=15 = 2�=3.
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